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Abstract 

In the framework of stochastic programming, we provide an explanation of a method for producing a warm-

start point for interior point methods. Because our method makes use of the structural information contained 

inside the stochastic problem, it is possible to interpret it as an initial point generator that exploits structural 

information. We first establish an improved starting point for the whole problem by solving a scaled-down 

version of the problem that corresponds to a smaller event tree, and then we utilise that answer to solve the 

original problem. When we create a reduced tree, we do it in a way that aims to extract the most relevant 

information from the scenario space while while maintaining a manageable level of dimensionality in the 

corresponding reduced deterministic counterpart. We arrive at requirements that the reduced tree has to 

fulfil in order to ensure a successful warm start of the entire issue, and we derive these conditions here. The 

implementation inside the OOPS and HOPDM interior point solvers demonstrates a number of significant 

benefits. 

Keywords: Warm-start, stochastic, programs 

Introduction 

Modeling uncertainty through consideration of a number of potential outcomes in the future is what 

stochastic programming does (scenarios). The judgments that are made tend to be more reliable when there 

is more depth in the description. In order to do this, extremely large scenario trees and, as a direct result of 

this, very large scale deterministic equivalent matrices need to be created. It is anticipated that the 

requirement for finding solutions to very big issue instances would increase in proportion to the rising 

industry recognition of the advantages afforded by taking into account uncertainty for the purposes of 

planning. 

When dealing with issues of increasing complexity, depending on interior point solvers offers more obvious 

advantages in terms of their applicability in practise. Problems of this size can be solved by exploiting the 

structure that is already present in the matrix. This leads to an additional advantage that comes from 

assigning the computational work to more than one processing unit through the parallelization of the linear 

algebra. However, general purpose solvers have a very difficult time solving very large scale problems. 

Structure-exploiting parallel solvers such as OOPS [3] perform exceptionally well in this context. In 

addition, structure-exploiting interior point approaches are applicable to not just linear programming issues, 

but also quadratic and nonlinear problems [2]. These methods may be utilised to solve linear programming 
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problems. Because there may be very little variation between scenarios in a large scenario tree, the large-

scale problem may be able to provide a fine-grained solution to a problem that could have been solved more 

coarsely by employing a much smaller tree. In other words, the large-scale problem may be able to provide 

a solution to a problem that could have been solved more coarsely by employing This discovery provides 

support for a warm-start approach that may be utilised within the framework of interior point techniques. In 

order to acquire a warm-start solution, one must first solve the stochastic optimization problem for a 

reduced event tree. The dimension of the reduced event tree is significantly less than that of the whole event 

tree. In order to develop an advanced iteration for the whole formulation, the solution to the reduced issue is 

employed as a starting point. We present evidence that this unique technique of utilising the issue structure 

to generate an initial iteration gives a starting point that is superior to the one produced by a generic strategy 

in terms of centrality, feasibility, and proximity to optimality. We want to underline that the suggested 

warm-start method is not reliant in any way on the specifics of the linear algebra implementation that the 

solver chooses to use. The following is the structure of this paper: In the second section, we provide a 

measure of the distance between different scenarios and go through some of the fundamental ideas behind 

stochastic programming. In Section 3, we take a look at a few papers that discuss warm-start procedures for 

interior point methods. In the next section, "Section 4," we will discuss a way for creating the warm-start 

iterate and generating a reduced event tree. In Section 5, we do an analysis of the method and establish the 

boundaries that the reduced tree has to fulfil in order to ensure that the warm start is successful. In the next 

section, "Section 6," we will talk about the implementation as well as the numerical results. In the final part 

of this chapter, Section 7, we offer our conclusions. 

Warm-start strategies 

 A warm-start technique is one that begins working on the next problem by applying the solution that 

was just found to the previous one. 

 Important if we are going to be working through a series of issues. 

 Many times, we may anticipate that the answer to one problem will be somewhat near to the answer 

to the following problem. 

 A more developed starting point might result in a shorter amount of computing time than beginning 

from scratch to solve the problem. 

Warm-start with the simplex method 

The solution of a problem is a vertex: 

 

Warm-start with the simplex method 

The solution of a problem is a vertex: 
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 The perfect place to begin with the customised instance 

 Optimality was achieved in a short amount of iterations (if there are not too many changes in the 

problems) 

Stochastic programming 

Forecasts of future data are typically developed using econometric models that factor in data from the past. 

While this method is useful for identifying trends and the variations that accompany them, it is, 

unfortunately, inapplicable to products and services that have only recently been introduced because the 

relevant data may not be readily available. The use of deterministic models is regarded insufficient for 

decision making when the uncertainty cannot be readily forecasted. In these kinds of circumstances, the 

capability to characterize and model the unknowable characteristics becomes an absolute necessity for 

making sound decisions. The field of stochastic programming [4] investigates the approaches to modelling 

uncertainty and offers the relevant tools. The utility of stochastic programming stems from the fact that it 

provides a plethora of tools that make it possible to deal with uncertainty in a manner that is both realistic 

and actionable. Stochastic programming's growing popularity may be attributed to the fact that its 

underlying paradigm is ideally suited for modelling a wide variety of real-world issues that arise in a variety 

of contexts (finance, energy production and planning, telecommunications, logistics, etc). In stochastic 

programming, the uncertain environment is often estimated from historical data or conjectured according to 

required features, and this procedure is used to construct the stochastic process that is used to characterise 

the environment. In order to generate a description that can be processed by a computer, it is common 

practise to first obtain an approximation of the continuous process using a discrete distribution. In such a 

circumstance, the most prevalent methodologies [5] create a finite number of scenarios that offer an 

approximate description of the various outcomes. On average, the number of scenarios generated is rather 

big. 

Deterministic equivalent formulation for stochastic programs 

Recursion is essential to the natural formulation of a stochastic programming issue because it allows for an 

accurate description of the dynamics of the process being modelled. When we talk about having recourse, 

we imply that the decision variables will adjust to the various results that the random parameters provide at 

each and every time period. In the context of a planning strategy, the progression of uncertainty may be seen 

as an alternating series of decisions and random realisations that take place at various times throughout the 

planning process (stages). 

The discrete stochastic process can be represented as an event tree (Figure 1). A node denotes a 
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Figure 1: An event tree. 

The instant at which it is determined whether or not a choice should be made after it has become apparent 

that the procedure was random. We assign a set of constraints, an objective function, and the conditional 

probability of visiting a node of the event tree based on the node that served as its parent in the stage before 

this one to each individual node of the tree. A scenario is represented by a path that travels from the event 

tree's root node to one of its leaf nodes. The likelihood of each scenario may be calculated by multiplying 

the conditional probabilities associated with travelling to each node along the path. We use a breadth-first 

ordering, which means that we start from the root node corresponding to the initial stage (stage 1) and end 

with leaf nodes corresponding to the final stage. Enumerating all of the nodes of the event tree is necessary 

for us to be able to express the deterministic equivalent of the multi-stage stochastic programming problem 

in node formulation. To do this, we need to enumerate all of the nodes of the event tree (stage tf ). Let's 

designate the stages with the notation t = 1, 2, etc., and the set of nodes at stage t with the notation Lt. When 

we use the notation a(l), we are referring to the direct ancestor of the node l Lt, which is a node that is part 

of stage t 1. In this language, the decision variables are prefaced by the node number l, and a notation very 

similar to this is used for the accompanying matrix and vector blocks. 

In the case of one-period recourse, the main constraint that describes the dynamics of the system has the 

form 

 

The deterministic equivalent formulation of the multi-stage problem has the following general form. Where 

T l is the technology matrix that varies with the node in the event tree, and W l is the recourse matrix that, in 

general, may depend on realisations within the same stage, but often varies only with time, the deterministic 

equivalent formulation of the multi-stage problem is as follows: 

 

It is important to keep in mind that the probabilities used in the objective function of issue (1) are the 

unconditional route probabilities: The chance that a path travels via node l, denoted by the symbol p l, is 

equal to the product of the probabilities that are conditional on the path's existence. I for I along the route 

leading from the root to the node e l, in order to ensure that 
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During the development of the programme, if the event tree is traversed with depth-first ordering of the 

nodes, then the related constraint matrix will exhibit a nested dual block-angular structure. Figure 2 

illustrates the two distinct structures that may have been created for the event tree shown in Figure 1 based 

on the particular ordering of the nodes. Despite the fact that the multiple orderings of the blocks inside the 

matrix are irrelevant for 

 

Figure 2: Deterministic equivalent corresponding to the event tree of Figure 1, with nodes listed in 

breadth-first order (left) and depth-first order (right). 

The structure-exploiting programme OOPS [6] is able to make full use of the nested dual block-angular 

structure that is the consequence of the depth-first ordering in its internal object-oriented linear algebra 

representation. This allows general-purpose solvers to take full advantage of the structure. In the scholarly 

research on stochastic linear programming, several approaches to problem solving with solutions have been 

developed. These often rely, among other methods, on some kind of decomposition strategy [7]. Instead, in 

this piece of work, we take a look at the possibility of directly solving the deterministic equivalent issue 

using an interior point technique. 

Warm-start with interior point methods 

Take, for example, the issue of linear programming in its conventional form. 

 ………………………..(2) 

Where  is full rank  and  We shall refer to issue (2), which corresponds to the 

deterministic equivalent derived from a given event tree T, as the entire problem for the purposes of this 

work. 

The non-negativity constraints are replaced by a logarithmic term in the context of interior point techniques, 

which results in the generation of the barrier problem. 

 ……………………………..(3) 

Where µ > 0 is the barrier parameter the first-order optimality conditions (Karush-Kuhn Tucker conditions) 

corresponding to problem (3) can be expressed as 
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Whereas s Rn is the vector of dual slacks, X and S are diagonal matrices with elements xi and si 

respectively, and e Rn is a vector of ones, the expression is as follows: The solution of the perturbed 

Karush-Kuhn-Tucker conditions follows a unique path toward the optimal set as is lowered at each iteration. 

This path is commonly referred to as the centre path. Methods that follow a path via an inner point network 

[8] Make use of Newton's approach to look for a solution to the nonlinear system F(x, y, s) = 0 and take into 

consideration the Newton system. 

……………………..(4) 

Which needs to be solved with a specified µ for a search direction  to guarantee the positivity 

of the x and s components when moving along the search direction, the maximum stepsize α is computed 

such that  Path-following techniques focus on maintaining the iterates in close 

proximity to the centre path in order to follow that path and get closer to the best possible answer. In this 

part of our investigation, we focus on the symmetrical area [6] surrounding the centre route. 

 …………………..(5) 

Where 0 < γ < 1. In the authors’ experience, such a neighbourhood best describes the desired properties of a 

“well-centered” interior point iterate.  

It is common practise to handle the challenge of locating a starting point by employing Mehrotra's starting 

point heuristic, which is recognised for its efficiency from a computing standpoint. The beginning point is 

determined using this heuristic by first shifting the point that was determined by solving two problems 

involving the least squares that aim to meet primal and dual constraints. This point is then moved inside the 

positive orthogonal. However, a large number of practical applications rely on the resolution of a series of 

issues that are closely connected to one another, but the specific examples differ in some way. This occurs 

inside algorithms that are sequential in their nature; also, it is a fairly regular occurrence in (mixed) integer 

programming, when the problems are addressed with some branching strategy, when new cuts are made, 

etc. In these kinds of circumstances, we anticipate that the answer to one instance will be quite similar to the 

answer to the following one. As a result, beginning the optimization of one problem from the solution of the 

problem that came before it should result in a reduction in the amount of computing work required to solve 

the perturbed instance. When utilised in conjunction with a simplex solver, warm-start strategies have a high 

rate of success (see, for example, [9]). Instead, when it comes to interior point methods, it is far more 

difficult to correctly implement them due to the reasons that we will discuss below. When solving a linear 

programming problem with the path-following interior point method, the optimal solution is located in close 

proximity to a vertex of the feasible polytope; alternatively, when there are multiple optimal solutions, the 

optimal solution is located in close proximity to the analytic centre of the optimal set of solutions. If the 

polytope is altered, the previously optimum solution may now be located a significant distance from the 

path that leads to the centre of the instance that has been disturbed. In addition, if an iterate goes too near to 
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a boundary before optimality is attained, an interior point algorithm could get stuck. Hipolito analysed such 

a case and shown that if the iterate is close to a boundary, the search direction may be parallel to the 

surrounding restrictions. He showed this by showing that if the iterate is close to a boundary. 

Analysis of the warm-start iterate 

In this part, we will investigate how the warm-start iterate that was constructed using the processes that were 

described earlier in this article fits the constraints that were stated by Gondzio and Grothey [10]. In contrast 

to what can be seen 

 

Figure 3: Generation of the warm-start iterate. 

Given that the size of the reduced tree problem is, by definition, significantly lower than that of the full 

problem, it is assumed that the dimension of the problem shifts in both of these approaches, as well as in our 

own. However, similarly to what we did with the solution vector, we are able to expand the reduced 

problem to one that has the same dimension as the full problem (3) by replicating the blocks in the 

coefficient matrix and in the objective and right-hand side vectors, as shown in Figure 4. This allows us to 

expand the reduced problem to one that has the same dimension as the full problem. Creating the 

(artificially) enlarged problem is equivalent to this action. 

 

Figure 4: The expanded system for the complete event tree of Figure 3. 

 

the dimension of which   corresponds to the dimension of the complete 

problem (3). Using the notation introduced earlier, we will denote all symbols referring to the expanded 

problem with a hat ˆ. 
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To analyse the warm-start iterate we can now follow a two-step procedure. First we note that from an 

advanced iterate  for the reduced problem the procedure in (13) constructs a primal–dual 

feasible point  for the expanded problem. Indeed, in Theorem 3 we will show that  the 

second part of the process is where we may leverage these iterates to get a head start on the entire challenge. 

Because the size of the issue does not change when moving from the extended to the entire problem, the 

methods that were described in [11] may be utilised to analyse the warm-start iterate. 

The investigation starts out with a purely technical result. 

Lemma Let l ∈ T , then 

 

Proof. We have this chain of identities: 

 

where the first equality follows from (13) and the second from   for  The 

last equality is obtained observing that we can partition  according to (9). The claim then follows noting 

that for a node l at stage  

 

While for a node l at stage   

 

The following two findings demonstrate that the reduced tree solution may be used to the extended problem 

in order to obtain a point that is primal–dual viable and central to that problem. 

Theorem If (xR, yR, sR) is primal and dual feasible for the reduced problem then the warm-start solution 

(xˆ, yˆ, sˆ) obtained from is primal and dual feasible for the expanded problem. 

Proof   primal feasibility is trivially satisfied: 

 

Now let's look at the possibility of dual feasibility. Assuming this to be true, the solution to the simplified 

issue meets the following dual constraints: 
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Multiplying both terms by   we obtain 

 

Which, according to and Lemma 1, becomes? 

 

So (yˆ, sˆ) satisfies the dual constraints in the expanded problem. 

Theorem 3.  If (xR, yR, sR) ∈ N R s (γ) for som  

Proof. From Theorem 2, the warm-start iterate   is feasible in the reduced system. Hence, here we 

only need to prove centrality. We observe that 

 

Where we used (13) and (12), and   hence, since  implies 

 using (10) we have 

 

 

 

The upper bound xˆ l j sˆ l j ≤ µ/ˆ (ργ) can be derived similarly. 

Implementation and numerical results 

Within the HOPDM solver, we began by putting into action the technique of constructing a reduced tree in 

conjunction with the associated warm start iterates. We examined a number of publicly accessible stochastic 

issues in the SMPS format. These problems originated from the POSTS collection, which can be accessed 

[13] It is important to highlight that in order to maintain the size of the problems and achieve appropriate 

warm-start points, we disabled the presolve feature of the HOPDM algorithm. However, in practise, we 

found that the reduced-tree warm-start strategy is effective even with a much sparser tree than what is 

suggested by the theory. This is in contrast to the results of the analysis presented in Section 5, which are 

very conservative in their estimates of the absorbable perturbations. During the course of our studies, a 
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variety of options for the smaller tree size were investigated; nevertheless, there was no discernible impact 

on the efficiency of the warm-start technique as a result. In the results that are provided below, the reduced 

tree was constructed using only two different possible outcomes. We solved the reduced issue using a 

tolerance for optimality of 5.0 x 101, whereas the optimality tolerance for the whole problem was set at 5.0 

x 108. The computations were carried out using a personal computer running Linux and equipped with a 

3.0GHz Intel Pentium processor and 1 gigabyte of random access memory (RAM). In Table 1, we present 

the dimensions of the issues in terms of the number of stages and scenarios for the whole tree, as well as the 

number of iterations and the amount of time it takes to compute the problem (in seconds) with a cold start 

and a warm start respectively. The latter entails the creation of the warm-start iteration in addition to the 

development and solution of the reduced issue. The issues that were resolved point to a generally positive 

performance of our warm-start method, which resulted in time savings of up to 59 percent (for problem 

pltexpA5 6) The production of the reduced tree and the solution of the related issue (11) are often quick 

processes, and the time it takes for either of these processes to complete becomes insignificant as the size of 

the problem increases. However, it is evident and eats up the savings provided by utilising an advanced 

iteration for the three smallest instances of our test set (fxm2 16, fxm3, and fxm4) 6. 

Table 1: Results obtained with HOPDM, 2 scenarios in the reduced tree. 

 

Effectiveness with respect to the VSS 

We investigated how well the warm-start strategy worked in comparison to the value of the stochastic 

solution (VSS) [12]. The VSS is a metric that evaluates how much of an improvement there is in the 

objective function when a stochastic issue is solved as opposed to an expected value problem. Since this is 

the case, formulating and solving a stochastic problem may not be worth the effort for low values of the 

VSS. On the other hand, when applied to greater values of the VSS, the stochastic solution results in 

judgments that are much improved. The VSS may therefore be viewed as a measure of how much new 

knowledge about the problem is contained in the extra scenarios, as well as how significantly we anticipate 

the first-stage judgments for the whole tree to differ from the ones reached on the reduced tree. Within the 

framework of the telecommunications issue presented in Section 6.1, we came to the realisation that we 

might adjust the VSS by taking into account a variety of alternative values for the budget M. The first-stage 

judgments are practically independent of the stochasticity for very small values of the budget since we 

would resort to buying the cheapest arcs for any value of the unknown demand. However, for larger values 

of the budget, the stochasticity plays a significant role. Stochasticity, on the other hand, has an effect on the 

decisions made in the first stage when it is applied to greater values of the budget; as a result, the stochastic 
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measure rises. We give the results that we achieved by using a variety of values for the budget in the issues 

mnx-200 and jlg-200 in Figure 5. These findings may be found below. As we can see, there is no 

discernable association between the severity of the VSS and the efficacy of the warm-start method for these 

difficulties. This is the case regardless of the fact that the warm-start technique was utilised. 

 

Figure 5: Plot of the relative savings in number of iterations against the relative VSS. 

Conclusions 

We came up with a method that makes use of the nearly optimum solution to a stochastic linear programme 

that is associated with a reduced scenario tree in order to get a head start on a significantly more difficult 

issue that involves the entire scenario tree. Our strategy for decreasing the size of the scenario tree involved 

the presumption that we are unaware of the stochastic process that lies beneath it. As a result, we devised a 

makeshift method for determining the amount of space that separates each of the possibilities. We 

recommended shortening the distance to a variety of sample case studies; however, alternative possibilities 

might be conceived of and may be the topic of more research in the future. We made the discovery that the 

iterate that was created from the reduced issue offers a more developed starting point for the solution of the 

full problem, which, in most cases, results in a reduction in the number of iterations that are required. This 

results in significant time savings in the computing process due to the fact that the computational cost of 

producing such an iteration is almost nothing. 

References 

[1] H. Y. Benson and D. F. Shanno, An exact primal–dual penalty method approach to warmstarting 

interior-point methods for linear programming, Computational Optimization and Applications, 38 

(2007), pp. 371–399.  

[2] J. R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs, 

Operations Research, 33 (1985), pp. 989–1007.  

[3] J. R. Birge, M. A. H. Dempster, H. I. Gassmann, E. A. Gunn, A. J. King, and S. W. Wallace, A 

standard input format for multiperiod stochastic linear programs, Committee on Algorithms 

Newsletter, 17 (1987), pp. 1–19.  

[4] J. R. Birge and F. Louveaux, Introduction to stochastic programming, Springer Series in Operations 

Research, New York, 1997. 

[5] R. E. Bixby, Solving real-world linear programs: a decade and more of progress, Operations 

Research, 50 (2002), pp. 3–15.  

http://www.ijesrr.org/
mailto:editor@ijesrr.org


International Journal of Education and Science Research Review 
Volume-9, Issue-1 Jan-Feb-2022                                                                               E-ISSN 2348-6457 P-ISSN 2349-1817                                                                                    
              www.ijesrr.org                                                                                                                     Email- editor@ijesrr.org 

Copyright@ijesrr.org                                                                                                                                            Page      167 

[6] M. Colombo and J. Gondzio, Further development of multiple centrality correctors, Computational 

Optimization and Applications, 41 (2008), pp. 277–305.  

[7] J. Dupacoˇ va, ´ N. Growe-Kuska, ¨ and W. Romisch ¨ , Scenario reduction in stochastic 

programming, Mathematical Programming, 95 (2003), pp. 493–511. 

[8] J. Gondzio, Multiple centrality corrections in a primal-dual method for linear programming, 

Computational Optimization and Applications, 6 (1996), pp. 137–156.  

[9] Warm start of the primal-dual method applied in the cutting-plane scheme, Mathematical 

Programming, 83 (1998), pp. 125–143. 

[10] J. Gondzio and A. Grothey, Reoptimization with the primal-dual interior point method, SIAM 

Journal on Optimization, 13 (2003), pp. 842–864.  

[11] A new unblocking technique to warmstart interior point methods based on sensitivity analysis, 

Technical Report MS-06-005, School of Mathematics, The University of Edinburgh, December 

2006. Accepted for publication in SIAM Journal on Optimization.  

[12] Solving non-linear portfolio optimization problems with the primal-dual interior point method, 

European Journal of Operational Research, 181 (2007), pp. 1012–1029.  

[13] J. Gondzio and R. Sarkissian, Parallel interior-point solver for structured linear programs, 

Mathematical Programming, 96 (2003), pp. 561–584. 

http://www.ijesrr.org/
mailto:editor@ijesrr.org

